Calcula els següents límits, indicant que passa quan \(x\rightarrow +\infty\), \(x\rightarrow -\infty\) i \(x\rightarrow \infty\):
	
		| a) \(\displaystyle\lim_{x\rightarrow \infty} x^4 \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} x^4 = +\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} x^4 = +\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow  \infty} x^4 = +\infty\)  | 
	
	
		| b) \(\displaystyle\lim_{x\rightarrow \infty} x^5 \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} x^5 = +\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} x^5 = -\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow  \infty} x^5 = \infty\)  | 
	
	
		| c) \(\displaystyle\lim_{x\rightarrow \infty} \frac{1}{x^3} \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} \frac{1}{x^3} = 0\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} \frac{1}{x^3} = 0\)  | 
		
				\(\displaystyle\lim_{x\rightarrow  \infty} \frac{1}{x^3} = 0\)  | 
	
	
		| d) \(\displaystyle\lim_{x\rightarrow \infty} \frac{1}{x^6} \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} \frac{1}{x^6} = 0\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} \frac{1}{x^6} = 0\)  | 
		
				\(\displaystyle\lim_{x\rightarrow  \infty} \frac{1}{x^6} = 0\)  | 
	
	
		| e) \(\displaystyle\lim_{x\rightarrow \infty} \sqrt[5]{x} \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} \sqrt[5]{x} = +\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} \sqrt[5]{x} = -\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow  \infty} \sqrt[5]{x} =  \infty\)  | 
	
	
		| f) \(\displaystyle\lim_{x\rightarrow \infty} \sqrt[4]{x} \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} \sqrt[4]{x} = +\infty\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow -\infty} \sqrt[4]{x} \)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow  \infty} \sqrt[4]{x} \)  | 
	
Calcula els següents límits, indicant que passa quan \(x\rightarrow +\infty\), \(x\rightarrow -\infty\) i \(x\rightarrow \infty\):
	
		| a) \(\displaystyle\lim_{x\rightarrow \infty} 3^x \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} 3^x = +\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} 3^x = 0\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow \infty} 3^x\)  | 
	
	
		| b) \(\displaystyle\lim_{x\rightarrow \infty} -3^x \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} -3^x = -\infty\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} -3^x = 0\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow \infty} -3^x\)  | 
	
	
		| c) \(\displaystyle\lim_{x\rightarrow \infty} \text{0,5}^x \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} \text{0,5}^x = 0\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} \text{0,5}^x = +\infty\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow \infty} \text{0,5}^x \)  | 
	
	
		| d) \(\displaystyle\lim_{x\rightarrow \infty} -\text{0,5}^x \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} -\text{0,5}^x = 0\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} -\text{0,5}^x = -\infty\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow \infty} -\text{0,5}^x \)  | 
	
	
		| e) \(\displaystyle\lim_{x\rightarrow \infty} 5^{-x} \) | 
		Solució: | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty} 5^{-x} = 0\)  | 
		
				\(\displaystyle\lim_{x\rightarrow -\infty} 5^{-x} = +\infty\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow \infty} 5^{-x}\)  | 
	
	
		| a) \(\displaystyle\lim_{x\rightarrow 0}\left(\log{x}\right)\) | 
		Solució: | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow 0^-}\left(\log{x}\right)\)  | 
		
				\(\displaystyle\lim_{x\rightarrow 0^+}\left(\log{x}\right)= -\infty\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow 0}\left(\log{x}\right)\)  | 
	
	
		| b) \(\displaystyle\lim_{x\rightarrow 1}\left(\log{x}\right)\) | 
		Solució: | 
		
		 | 
		 | 
				\(\displaystyle\lim_{x\rightarrow 1}\left(\log{x}\right)=0\)  | 
	
	
		| c) \(\displaystyle\lim_{x\rightarrow \infty}\left(\log{x}\right)\) | 
		Solució: | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow -\infty}\left(\log{x}\right)\)  | 
		
				\(\displaystyle\lim_{x\rightarrow +\infty}\left(\log{x}\right)=+\infty\)  | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow \infty}\left(\log{x}\right)\)  | 
	
	
		| d) \(\displaystyle\lim_{x\rightarrow 0}\left(\log_\text{0,1}{x}\right)\) | 
		Solució: | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow 0^-}\left(\log_\text{0,1}{x}\right)\)
		 
				\(\displaystyle\lim_{x\rightarrow 0^+}\left(\log_\text{0,1}{x}\right)=+\infty\)
		 
				\(\displaystyle\nexists\lim_{x\rightarrow 0}\left(\log_\text{0,1}{x}\right)\)  | 
	 |  | 
	
		| e) \(\displaystyle\lim_{x\rightarrow \infty}\left(\log_\text{0,1}{x}\right)\) | 
		Solució: | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow -\infty}\left(\log_\text{0,1}{x}\right)\)
		 
				\(\displaystyle\lim_{x\rightarrow +\infty}\left(\log_\text{0,1}{x}\right)=-\infty\)
		 
				\(\displaystyle\nexists\lim_{x\rightarrow \infty}\left(\log_\text{0,1}{x}\right)\)  | 
	 |  | 
	
		| a) \(\displaystyle\lim_{x\rightarrow -\infty}\left( 3x^4-2x^5 \right)\) | 
		Solució: | 
		
				\(\displaystyle
					\lim_{x\rightarrow -\infty}\left( 3x^4-2x^5 \right) = 
					\lim_{x\rightarrow -\infty}\left( -2x^5 \right) = +\infty
				\)  | 
	
	
		| b) \(\displaystyle\lim_{x\rightarrow\pm\infty}\left(2x^2-3\sqrt{x^5}\right)\) | 
		Solució: | 
		
				\(\displaystyle
					\lim_{x\rightarrow \pm\infty}\left( 2x^2-3\sqrt{x^5} \right) = 
					\lim_{x\rightarrow \pm\infty}\left( 2x^2-3x^\frac{5}{2} \right) =
					\lim_{x\rightarrow \pm\infty}\left( -3x^\frac{5}{2} \right) = \mp\infty
				\)  | 
	
	
		| c) \(\displaystyle\lim_{x\rightarrow +\infty}\left(3^x-x^4\right)\) | 
		Solució: | 
		
				\(\displaystyle
					\lim_{x\rightarrow +\infty}\left(3^x-x^4\right) = 
					\lim_{x\rightarrow +\infty} {3^x} = +\infty
				\)  | 
	
	
		| d) \(\displaystyle\lim_{x\rightarrow -\infty}\left(3^x-x^4\right)\) | 
		Solució: | 
		
				\(\displaystyle
					\lim_{x\rightarrow -\infty}\left(3^x-x^4\right) = 
					\lim_{x\rightarrow -\infty} {-x^4} = -\infty
				\)  | 
	
	
		| e) \(\displaystyle\lim_{x\rightarrow +\infty}\left(x-\log_2{x}\right)\) | 
		Solució: | 
		
				\(\displaystyle
					\lim_{x\rightarrow +\infty}\left(x-\log_2{x}\right) = 
					\lim_{x\rightarrow +\infty} {x} = +\infty
				\)  | 
	
	
		| f) \(\displaystyle\lim_{x\rightarrow -\infty}\left(\log{x}-\log_2{x}\right)\) | 
		Solució: | 
		
				\(\displaystyle\nexists\lim_{x\rightarrow -\infty}\left(\log{x}-\log_2{x}\right)
				\)  | 
	
	
		| g) \(\displaystyle\lim_{x\rightarrow +\infty}\left(4x^3-5^x+\log_5{x}\right)\) | 
		Solució: | 
		
				\(\displaystyle
					\lim_{x\rightarrow +\infty}\left(4x^3-5^x+\log_5{x}\right) = 
					\lim_{x\rightarrow +\infty}\left(-5^x\right) = -\infty 
				\)  | 
	
	
		| a) \(\displaystyle\lim_{x\rightarrow \infty}\frac{2x^2+3x^3}{4x^3-5x}\) | 
		Solució: | 
		
				\(\displaystyle \lim_{x\rightarrow \pm\infty}\frac{2x^2+3x^3}{4x^3-5x} = \frac{3}{4}\)
		  | 
	
	
		| b) \(\displaystyle\lim_{x\rightarrow \infty}\frac{4x^4-5x^2}{-2x^3+x^2-6x}\) | 
		Solució: | 
		
				\(\displaystyle \lim_{x\rightarrow \pm\infty}\frac{4x^4-5x^2}{-2x^3+x^2-6x} = \mp\infty	\)
		  | 
	
	
		| c) \(\displaystyle\lim_{x\rightarrow \infty}\frac{-5x^3+3x^2}{-4x^4+6x^2-1}\) | 
		Solució: | 
		
				\(\displaystyle \lim_{x\rightarrow \infty}\frac{-5x^3+3x^2}{-4x^4+6x^2-1} = 0	\)
		  | 
	
	
		| d) \(\displaystyle\lim_{x\rightarrow +\infty}\frac{x^3+e^x}{x^4+\log_2{x}}\) | 
		Solució: | 
		
				\(
					\displaystyle
					\lim_{x\rightarrow +\infty}\frac{x^3+e^x}{x^4+\log_2{x}} = 
					\lim_{x\rightarrow +\infty}\frac{e^x}{x^4} = 
					+\infty
				\)
		  | 
	
		| e) \(\displaystyle\lim_{x\rightarrow -\infty}\frac{x^3+e^x}{x^4+\log_2{x}}\) | 
		Solució: | 
		
				\(
					\displaystyle
					\nexists\lim_{x\rightarrow -\infty}{\log_2{x}} \Rightarrow
					\nexists\lim_{x\rightarrow -\infty}\frac{x^3+e^x}{x^4+\log_2{x}}
				\)
		  | 
	
		| f) \(\displaystyle\lim_{x\rightarrow +\infty}\frac{3^x-e^x}{2^x-e^x}\) | 
		Solució: | 
		
				\(
					\displaystyle
					\lim_{x\rightarrow +\infty}{\frac{3^x-e^x}{2^x-e^x}} =
					\lim_{x\rightarrow +\infty}{\frac{3^x}{-e^x}} =
					-\infty
				\)
		  |