REACK Balancing and calculations on chemical equations

🝔 Chemical equations: balancing and calculations			

- Reactions: importing and editing
- Balancing a reaction
- <u>Calculations on a chemical equation</u>
- Problem

Reactions: importing and editing

Only are supported "molecular" (not ionic) reactions, and they only may consist in formulas and coefficients (not other indications)

- Importing standard reactions
- Building /editing manually a chemical equation

Importing standard reactions

Clicking on the menu File option...

The window that connects with the database of standard reactions is shown

At this window you can also:

- Add: a new group or reaction by introducing it in its textbox (+Return)
- Modify: by selecting one from its list, editing it and Return
- Erase: by selecting it and clicking on the button 🗴

Building /editing manually a chemical equation

Introducing the reactants and products in their textboxes, the chemical equation (not balanced) will be formed.

Reaction					
$C_4H_{10} + O_2 \longrightarrow CO_2 +$	H ₂ O				
			New	Balance	AutoBalance
_Reactants / Produ	cts				
Reactants	rInitialrm	ol r. jend	Products		rmol-
C4H10			CO2		
02			H2O		
C4H10+O2	~		C02+H20	~	
,		+ -	,		

An option to introduce formulas without writing them is to invoke the window of compounds...

Here you have these options:

- Transfer selected formula to the main window
- Edit formula (and name)
- Erase compound

form H2SO4	nam	sulfuric acid	Ok
------------	-----	---------------	----

- New: ncorporate new compounds

Balancing a reaction

Once obtained a reaction, we must balance its equation so that it reflects the proportion in mols of the implied compounds.

Clicking on <u>Accept</u> the program will accept the balance if it is correct or it will show error messages if not .

AutoBalancing: Clicking on AutoBalance the program will calculate the coefficients.

This option is not advisable from the point of view of learning, but it will be useful when you want to pass directly to the phase of calculations.

Anyway, you obtain the balanced equation:

Reaction			
$2 C_4 H_{10} + 13 O_2 \longrightarrow 8 CO_2 + 10 H_2 O_2$			
	New	Calculations	AutoBalance

<u>Note about **autobalancing**</u>: the method is purely mathematical and, although rarely, in the Redox reactions can give a result mathematically correct but chemically false, that is: such that the number of electrons given by the reducer is different from the one captured by the oxidizer. An example: The reaction $KMnO_4 + H_2S + H_2SO_4 = MnSO_4 + S + K_2SO_4 + H_2O$, if balanced by the mathematic method gives $2 KMnO_4 + 2 H_2S + 2 H_2SO_4 = 2 MnSO_4 + S + K_2SO_4 + 4 H_2O$, that is compliant with the mass conservation, but balanced by the ion-electron method yields the chemically actual equation:

2 KMnO₄ + 5 H₂S + 3 H₂SO₄ = 2 MnSO₄ + 5 S + K₂SO₄ + 8 H₂O

Calculations based on a (balanced) reaction:

Once balanced the equation, clicking on Calculations the textboxes for introduce data and present results will be shown.

You can introduce data of:

- One or more <u>reactants</u> (if more than one, the limiting reactant will be calculated).
- Or only <u>one product</u> (if more, they will be ignored).

The units of those (grams by default) can also be chosen here.

🖶 Chemical equations: balancing and calculations	\times
File Data Tools Info Exit	
Reaction	
$2 C_4 H_{10} + 13 O_2 \longrightarrow 8 CO_2 + 10 H_2 O$	
New Calculations AutoBalance	
Calculations on the reaction	
Reactantsmol rend Productsmol	
Onits O2	

Cicking OK after the introduction, results are shown in the empty textboxes, and also a window that shows an outline of the "problem" formed:

0	Problem	
File	;	
	REACTION: 2 C4H10 + 13 O2 = 8 CO2 + 10 H2O	<u>^</u>
	E=====================================	
	REACTANT reac. mols - amount excess (= ini-reac.)	
	O2 0.043029·13 = 0.55938· R·296K/1atm L/mol = 13.577L -> 32.42 L	
	PRODUCT mols amounts	
	CO2 0.145784 x 8 = 0.344234 ·44g/mol = 15.15 g H2O 0.145784 x 10 = 0.430293 ·18g/mol = 7.75 g	

The problem can be saved in a file (in mode text). If the file already exists the problem will be added to it, and if not it will be created.

File		
A	Add to	
E	×it	